A polynomial time algorithm to detect PQI interval orders
نویسندگان
چکیده
منابع مشابه
A Characterization of PQI Interval Orders
We provide an answer to an open problem concerning the representation of preferences by intervals. Given a finite set of elements and three relations on this set (indifference, weak preference and strict preference), necessary and sufficient conditions are provided for representing the elements of the set by intervals in such a way that 1) two elements are indifferent when the interval associat...
متن کاملNumerical representation of PQI interval orders
We consider the problem of numerical representations of P QI interval orders. A preference structure on a finite set A with three relations P, Q, I standing for " strict preference " , " weak preference " and " indifference " respectively , is defined as a P QI interval order iff there exists a representation of each element of A by an interval in such a way that, P holds when one interval is c...
متن کاملA Polynomial Algorithm for Minimal Interval Representation
A three-dimensional object has many possible representations inside a computer. Specifically, constructive solid geometry, boundary representation, and volumetric approximation techniques are commonly used to represent objects in solid geometric modeling (see [4]). Among the volumetric schemes are the octree [3] and the more recently developed switching-function representation [6] in which the ...
متن کاملA Parallel Algorithm for Interval Polynomial Interpolation
By taking data measurement errors into considerations, numerical results obtained by interval polynomial interpolation [5] are highly reliable. To reduce overestimation, combinations of interval nodes are used. The high computational complexity makes it necessary to perform the computation parallelly. In this paper, we report a parallel algorithm which effectively perform the combinatorical com...
متن کاملA Polynomial Time SAT Algorithm
An algorithm of two parts is presented that determines existence of and instance of an assignment satisfying of instances of SAT. The algorithm employs an unconventional approach premised on set theory, which does not use search or resolution, to partition the set of all assignments into nonsatisfying and satisfying assignments. The algorithm, correctness, and time and space complexity proofs a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Transactions in Operational Research
سال: 2000
ISSN: 0969-6016,1475-3995
DOI: 10.1111/j.1475-3995.2000.tb00220.x